Nitrogen mineralisation in relation to previous crops and pastures

Author:

Angus J. F.,Bolger T. P.,Kirkegaard J. A.,Peoples M. B.

Abstract

Most of the nitrogen (N) used by Australian crops is mineralised from the residues of previous crops and pastures. Net N mineralisation was studied in 2 field experiments in southern NSW, one comparing different residue-management and tillage systems during continuous cropping and the other comparing residues of annual and perennial pastures in a pasture–crop system. After 14 years of continuous cropping, soil total N concentration had decreased by 50%. Neither stubble retention nor direct drilling affected potential N mineralisation or the decrease in total N. However, soil mineral N in the field was greater after direct drilling than cultivation and greater after stubble retention than stubble burning. There were 2 reasons for the discrepancy. One was because retained stubble conserved soil water, leading to periods of increased mineralisation. The other was that direct drilling and stubble retention reduced growth and N uptake by crops. In contrast to the similar rates of potential mineralisation under different tillage and stubble systems, there were significant differences following different pasture species. In a 5-year study of a pasture–crop system we measured net mineralisation following annual pasture based on subterranean clover and perennial pasture based on lucerne and/or the grasses phalaris and cocksfoot. Mineralisation generally decreased with number of years after pasture removal. Previous lucerne pastures led to slow net mineralisation in the first year after removal, apparently because of immobilisation by high C : N residues. Mineralisation in soil containing perennial grass residues was the highest measured. This high rate may be due to redistribution of N to the topsoil by roots of perennial grasses. The comparison of continuous crop and pasture–crop systems showed that the decline in soil N supply was not prevented by direct drilling and stubble conservation, but N mineralisation was increased by pastures, particularly those containing perennial grasses.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3