Influence of soil organic matter, fertiliser formulation and season on fertiliser nitrogen use efficiency in temperate pastures

Author:

Belyaeva Oxana,Ward Graeme,Wijesinghe Thushari,Chen Deli,Suter Helen

Abstract

AbstractIntensively grazed dairy systems use high inputs of fertiliser nitrogen (N), and often supplementary irrigation, to ensure adequate pasture production to support milk output and meet the growing food demand. However, the efficiency of N use in these systems can be low and potential environmental impacts high. This study aimed to test the hypothesis that (1) use of two inhibitors, the urease inhibitor N-(n-butyl) thiophosphorictriamide (NBTPT) and the nitrification inhibitor 3,4-Dimethylpyrazole phosphate (DMPP) reduced N loss and improved pasture production compared to conventional N fertiliser (urea) in irrigated temperate perennial ryegrass (Lolium perenne L.) dairy pasture, and (2) their efficiency was affected by soil and environmental parameters. The effect of repeated applications of urea, at different rates, and the inhibitors were studied on pasture production and agronomic apparent fertiliser N use efficiency (NUE) over 2.5 years. The fate of a single application of N was determined through recovery of 15N-labeled fertiliser applied at 20 and 40 kg N ha−1 was studied in the field for one year. The highest yield and NUE occurred in spring–summer (from August to February) reflecting optimal growing conditions. The highest NUE occurred at low rates of urea application (20 and 40 kg N ha−1). Mineralisation played a key role in supplying N to pasture with 64–82% of total plant N derived from soil organic matter (SOM). Less than 50% of the applied N was recovered in the pasture (37–43%) with a large component retained in the soil (26–43% after one year, 0–40 cm), and slowly released in small amounts (< 2%) to the pasture over time, highlighting the abundant capacity of the native soil N pool to supply pasture N. Loss of N fertiliser (14–31%) was attributed to primarily ammonia (NH3) volatilisation and nitrate (NO3) leaching. Use of the inhibitors NBTPT and DMPP did not significantly affect pasture yield or NUE, most likely because fertiliser N saved with the inhibitors only played a minor role in plant nutrition with the majority of the plant nutrition provided by the soil organic matter pool.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3