Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils

Author:

Benscoter B. W.,Thompson D. K.,Waddington J. M.,Flannigan M. D.,Wotton B. M.,de Groot W. J.,Turetsky M. R.

Abstract

The boreal biome is characterised by extensive wildfires that frequently burn into the thick organic soils found in many forests and wetlands. Previous studies investigating surface fuel consumption generally have not accounted for variation in the properties of organic soils or how this affects the severity of fuel consumption. We experimentally altered soil moisture profiles of peat monoliths collected from several vegetation types common in boreal bogs and used laboratory burn tests to examine the effects of depth-dependent variation in bulk density and moisture on depth of fuel consumption. Depth of burning ranged from 1 to 17 cm, comparable with observations following natural wildfires. Individually, fuel bulk density and moisture were unreliable predictors of depth of burning. However, they demonstrated a cumulative influence on the thermodynamics of downward combustion propagation. By modifying Van Wagner’s surface fuel consumption model to account for stratigraphic changes in fuel conditions, we were able to accurately predict the maximum depth of fuel consumption for most of the laboratory burn tests. This modified model for predicting the depth of surface fuel consumption in boreal ecosystems may provide a useful framework for informing wildland fire management activities and guiding future development of operational fire behaviour and carbon emission models.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

Cited by 141 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3