Affiliation:
1. Department of Geography, Faculty of Arts, Main Campus, University of Calgary, Calgary, AB T2N 1N4, Canada
2. Athabasca River Basin Research Institute, Faculty of Science and Technology, Main Campus, Athabasca University, Athabasca, AB T9S 3A3, Canada
Abstract
Seismic lines are cleared corridors for the location mapping of subsurface bitumen. After use, the lines can be left to regenerate naturally with varying success. Wildfires, another prominent disturbance in the Boreal region, are propagated by continuous fuel distribution (coarse/fine), meteorological variables (e.g., wind speed, temperature, and precipitation), and the moisture content of the fuel and soil. However, little is known about seismic lines and the potential risk and severity of wildfires. This work presents a case study of wildfire variables on two paired (seismic line and adjacent natural area) sites near Fort McMurray, Alberta, Canada. Wind speed was increased on seismic lines, and the dominant wind direction changed. Higher precipitation, air temperature, and soil moisture and reduced water table depths were observed on seismic lines. Coarse fuel distribution was not continuous on seismic lines; however, fine fuels were. Although the Fire Weather Index (FWI) indicated an enhanced wildfire potential on one line (NS orientation), peat smouldering and ignition models (Hcomb/Hign) showed increased smouldering potential on both seismic lines compared to adjacent natural areas. Future work should focus on expanding the diversity of seismic line characterization, working towards the landscape-scale modelling of these variables.
Funder
Athabasca University Academic Research Fund
Natural Sciences and Engineering Research Council Discovery Grant
Canada Research Chairs Program
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献