Abstract
Seismic lines are linear forest clearings used for oil and gas exploration. The mechanical opening of forests for these narrow (3–10 meter) lines is believed to simplify microtopographic complexity and depress local topographic elevation. In treed peatlands, simplified microtopography limits tree regeneration by removing favourable microsites (hummocks) for tree recruitment and increasing the occurrence of flooding that reduces survival of tree seedlings. Little, however, has been done to quantify the microtopography of seismic lines and specifically the degree of alteration. Here, we measured microtopography at 102 treed peatland sites in northeast Alberta, Canada using a high precision hydrostatic altimeter (ZIPLEVEL PRO-2000) that measured variation in local topography of seismic lines and adjacent paired undisturbed forests. Sites were separated into four peatland ecosite types and the presence or absence of recent (<22 years) wildfires. Paired t-tests were used to compare microtopographic complexity and depression depth of seismic lines compared with adjacent forests. Microtopographic complexity on seismic lines was simplified by 20% compared to adjacent stands with no significant change between recently burned and unburned sites, nor between ecosites. Not only were seismic lines simplified, but they were also depressed in elevation by an average of 8 cm compared to adjacent forests with some minor variation between ecosites observed, but again not with recent wildfires. Thus, simplification of microtopographic complexity and the creation of depressions can persist decades after initial disturbance with some differences between peatland ecosites, implying the need for ecosite-specific restoration of topographic complexity. The importance of microtopography for tree regeneration on seismic lines remains an important question for reforestation of these disturbances and thus long-term recovery of habitat for species dependent on undisturbed peatlands, including woodland caribou.
Funder
Natural Sciences and Engineering Research Council of Canada
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献