Inverted Soil Mounding as a Restoration Approach of Seismic Lines in Boreal Peatlands: Implications on Plant and Arthropod Abundance and Diversity

Author:

Echiverri Laureen1ORCID,Pinzon Jaime1ORCID,Dabros Anna1

Affiliation:

1. Natural Resources Canada—Canadian Forest Service, Northern Forestry Centre, Edmonton, AB T6H 3S5, Canada

Abstract

In northern Alberta, Canada, much of treed boreal peatlands are fragmented by seismic lines—linear disturbances where trees and shrubs are cleared for the exploration of fossil fuel reserves. Seismic lines have been shown to have slow tree regeneration, likely due to the loss of microtopography during the creation of seismic lines. Inverted soil mounding is one of the treatments commonly applied in Alberta to restore seismic lines and mitigate the use of these corridors by wildlife and humans. We assessed the effects of mounding on understory plants and arthropod assemblages three years after treatment application. We sampled five mounded and five untreated seismic lines and their adjacent treed fens (reference fens). Compared to reference fens, mounded seismic lines showed on average lower bryophyte (6.5% vs. 98.1%) and total understory cover (47.2% vs. 149.8%), ground-dwelling spider abundance (226.0 vs. 383 individuals), richness (87.2 vs. 106.4 species) and diversity (19.0 vs. 24.6 species), rove beetle abundance (35.2 vs. 84.8 individuals), and ant richness (9.0 vs. 12.9 species). In contrast, rove beetle and ground beetle richness (39.0 and 14.5 species, respectively) and diversity (16.8 and 7.8 species, respectively) were higher on mounded seismic lines compared to reference fens (richness: 18.0 and 7.5 species, respectively; diversity: 7.0 and 3.8 species, respectively). This is one of the first studies to assess arthropod responses to restoration efforts in the context of oil and gas disturbances in North America, and our results highlight the need to incorporate multiple taxa when examining the impact of such treatments.

Funder

Natural Resources Canada

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3