Recent massive expansion of wildfire and its impact on active layer over pan-Arctic permafrost

Author:

Zhu XingruORCID,Xu XiyanORCID,Jia GensuoORCID

Abstract

Abstract Wildfire is recognized as an increasing threat to the southern boreal forests and the permafrost beneath them, with less occurring over the cold continuous permafrost than before. However, we show that continuous permafrost was a major contribution to wildfire expansion in the pan-Arctic over the last two decades. The expansion rate of burned area over continuous permafrost was 0.9 Mha decade−1, in contrast to a decreasing trend (−0.5 Mha decade−1) over the entire permafrost areas. Burned area has been rapidly growing in the north of the Arctic Circle in particular, where the total burned area in the major fire seasons during 2011–2020 nearly doubled that during 2001–2010. Wildfire expansion is closely linked to an increased soil moisture deficit, considering wildfires there combust more than 90% of belowground fuel. Continuous permafrost experiences more severe fire-induced degradation. Active layer thickening following wildfires over continuous permafrost lasts more than three decades to reach a maximum of more than triple the pre-fire thickness. These new findings highlight the massive expansion of wildfires over continuous permafrost, which can dramatically modify ecological processes, disturb organic carbon stock, and thus accelerate the positive feedback between permafrost degradation and climate warming.

Funder

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3