Comparing the nitrogen and phosphorus requirements of canola and wheat for grain yield and quality

Author:

Brennan R. F.,Bolland M. D. A.

Abstract

Canola (oilseed rape, Brassica napus L.) is now grown in rotation with spring wheat (Triticum aestivum L.) on the predominantly sandy soils of south-western Australia. For both crop species, fertiliser nitrogen (N) and phosphorus (P) need to be applied for profitable grain production. The fertiliser N requirements have been determined separately for canola or wheat when adequate P was applied. By contrast, the fertiliser P requirements of the 2 species have been compared in the same experiment when adequate N was applied and showed that canola consistently required ~25–60% less P than wheat to produce 90% of the maximum grain yield. We report results of a field experiment conducted at 7 sites from 2000 to 2003 in the region to compare grain yield responses of canola and wheat to application of N and P in the same experiment. Four levels of N (0–138 kg N/ha as urea [46% N]) and 6 levels of P (0–40 kg P/ha as superphosphate [9.1%P]) were applied. Significant grain yield responses to applied N and P occurred for both crop species at all sites of the experiment, and the N × P interaction for grain production was always significant. To produce 90% of the maximum grain yield, canola required ~40% more N (range 16–75%) than wheat, and ~25% less P (range 12–43%) than wheat. For both crop species at 7 sites, applying increasing levels of N had no significant effect on the level of P required for 90% of maximum grain yield, although at 1 site the level of P required to achieve the target yield for both crop species when no N was applied (nil-N treatment) was significantly lower than for the other 3 treatments treated with N. For both crop species at all 7 sites, applying increasing levels of P increased the level of N required for 90% of the maximum grain yield. Fertiliser P had no significant effect on protein concentration in canola and wheat grain, and oil concentration in canola grain. As found in previous studies, application of increasing levels of N decreased oil concentration while increasing protein concentration in canola grain, and increased protein concentration in wheat grain. The N × P interaction was not significant for protein or oil concentration in grain. Protein concentrations in canola grain were about double those found in wheat grain.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3