Author:
Davies Kevin M.,Albert Nick W.,Schwinn Kathy E.
Abstract
Flower colour is a key component for plant signaling to pollinators and a staggering variety of colour variations are found in nature. Patterning of flower colour, such as pigment spots or stripes, is common and is important in promoting pollination success. Developmentally programmed pigmentation patterns are of interest with respect to the evolution of specialised plant–pollinator associations and as models for dissecting regulatory signaling in plants. This article reviews the occurrence and function of flower colour patterns, as well as the molecular genetics of anthocyanin pigmentation regulation. The transcription factors controlling anthocyanin biosynthesis have been characterised for many species and an ‘MBW’ regulatory complex of R2R3MYB, bHLH and WD-Repeat proteins is of central importance. In particular, R2R3MYBs are key determinants of pigmentation intensity and patterning in plants. Progress is now being made on how environmental or developmental signal pathways may in turn control the production of the MBW components. Furthermore, additional regulatory proteins that interact with the MBW activation complex are being identified, including a range of proteins that repress complex formation or action, either directly or indirectly. This review discusses some of the recent data on the regulatory factors and presents models of how patterns may be determined.
Subject
Plant Science,Agronomy and Crop Science
Cited by
265 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献