Forest fuel bed ignitability under marginal fire weather conditions in Eucalyptus forests

Author:

Cawson Jane G.,Duff Thomas J.

Abstract

Fires burning under marginal fire-weather conditions tend to be patchy in terms of their spatial coverage. This patchiness is partially driven by variability in the ignitability of the fuel bed. An understanding of fuel-bed ignitability through space and time would help fire managers to more effectively carry out prescribed burns to achieve desired levels of burn coverage in Eucalyptus forests. We sought to identify the key fuel-bed attributes influencing ignitability under marginal weather conditions. We recorded ignition successes and failures at 45 points within 5 operational prescribed burns and used the data to build logistic regression models to predict the probability of ignition as a function of fuel-bed attributes. Models were ranked using an information theoretic approach. The four highest ranked models explained 48–54% of the variance in ignitability. Surface fine-fuel moisture content (FFMC) and overall fuel hazard (i.e. fuel arrangement) were the strongest predictors of ignitability, occurring in all four highest ranking models. Both surface FFMC and overall fuel hazard were negatively related to ignition likelihood, contradicting a commonly assumed positive relationship between fuel hazard and flammability. Our field method to measure ignition success could be applied across more prescribed burns to develop operationally useful models of ignitability.

Publisher

CSIRO Publishing

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3