Moisture thresholds for ignition vary between types of eucalypt forests across an aridity gradient

Author:

Cawson Jane G.,Burton Jamie E.,Pickering Bianca J.,Penman Trent D.

Abstract

Abstract Context Quantifying spatial and temporal variations in landscape flammability is important for implementing ecologically desirable prescribed burns and gauging the level of fire risk across a landscape. Yet there is a paucity of models that provide adequate spatial detail about landscape flammability for these purposes. Objectives Our aim was to quantify spatial and temporal variations in ignitability across a forested landscape. We asked: (1) How do fuel moisture and meteorological variables interact to affect ignitability? (2) Do fuel moisture thresholds for ignition vary across a gradient of forest types? (3) How does the spatial connectivity of ignitable fuel vary over time? (4) How could an ignitability model be used to inform fire management decision-making? Methods We conducted field-based ignition tests with flaming firebrands over three fire seasons. Ignitions were attempted across a range of moisture and meteorological conditions at 15 sites in eucalypt forest in south-eastern Australia. Structural equation modelling and generalized linear models were used to quantify relationships between ignitability, aridity, fuel moisture and weather. Results The strongest predictors of ignitability were the moisture content of dead near surface fine fuel and in-forest vapour pressure deficit. Ignition thresholds for both varied across an aridity gradient. Dense forests (i.e., wet and damp eucalypt forests) needed drier fuel and drier in-forest atmospheric conditions to ignite than sparser forests (i.e., shrubby foothill forest). Conclusion Our modelling of ignitability could inform fire planning in south-eastern Australia and the methodology could be applied elsewhere to develop similar models for other regions. Days with consistently high ignitability across the landscape are more conducive to the development of large wildfires whereas days when ignitability is spatially variable are more suitable for prescribed burning.

Funder

Department of Energy, Environment and Climate Action

University of Melbourne

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3