Author:
Tymstra Cordy,Jain Piyush,Flannigan Mike D.
Abstract
We evaluated surface and 500-hPa synoptic weather patterns, and fire weather indices from the Canadian Forest Fire Danger Rating System for 80 large wildfires during 1990–2019 in Alberta that started in May and grew to over 1000 ha. Spread days were identified during the first 4 days of wildfire activity. We observed two distinct synoptic weather patterns on these days. Pre-frontal and frontal passage activity was the predominant feature associated with 48% of the calendar spread days. Strong south–south-east winds from a surface high centred east of Alberta (west of Hudson Bay) and supported by an upper ridge, and a surface low located south-west of the ridge occurred on 26% of the calendar spread days. Surface analysis indicates the spring wildfire season in Alberta is driven by very high to extreme Initial Spread Index, a rating of the expected wildfire rate of spread based on Fine Fuel Moisture Code and wind. Very high to extreme values of Buildup Index, a rating of the amount of fuel available for consumption, are not a prerequisite for large wildfires in May. For Alberta, this means large wildfires in May can occur after only a few days of dry, windy weather.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献