Sample preparation for rock wettability studies via atomic force microscopy

Author:

Mitiurev Nikolai A.,Verrall Michael,Ivanova Anastasia A.,Keshavarz Alireza,Iglauer Stefan

Abstract

The wettability of a reservoir rock is one of the most essential parameters in oil and gas recovery applications and gas storage schemes. However, bulk techniques, which are commonly used to analyse rock wettability, for example the United States Bureau of Mines test, are not sensitive enough to probe mixed-wettability scenarios. Furthermore, these measurements are conducted at millimetre–centimetre scale, while wettability is determined at the atomic scale, and some rocks (e.g. shale) have a very fine structure even at nanoscale. Additionally, in the case of shale rocks, standard wettability measurements cannot be applied due to their extremely low permeability. To overcome these limitations, wettability can be directly measured at the nanoscale with advanced analytical methods, such as scanning electron microscopy (SEM) and atomic force microscopy (AFM). While such techniques are well-established in various disciplines, there exists no standard procedure for rock wettability analysis at nanoscale. Thus, this study elaborates on the optimal methods that can be used for the preparation of an AFM-cantilever-rock grain sample, with which the rock wettability can be measured at atomic scale. Therefore, this work aids in the wider-scale implementation of AFM as a rock wettability measurement tool.

Publisher

CSIRO Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shale adhesion force measurements via atomic force microscopy;Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3