Shale adhesion force measurements via atomic force microscopy

Author:

Mitiurev Nikolai,Verrall Michael,Shilobreeva Svetlana,Keshavarz Alireza,Iglauer Stefan

Abstract

Wettability of sedimentary rock surface is an essential parameter that defines oil recovery and production rates of a reservoir. The discovery of wettability alteration in reservoirs, as well as complications that occur in analysis of heterogeneous sample, such as shale, for instance, have prompted scientists to look for the methods of wettability assessment at nanoscale. At the same time, bulk techniques, which are commonly applied, such as USBM (United States Bureau of Mines) or Amott tests, are not sensitive enough in cases with mixed wettability of rocks as they provide average wettability values of a core plug. Atomic Force Microscopy (AFM) has been identified as one of the methods that allow for measurement of adhesion forces between cantilever and sample surface in an exact location at nanoscale. These adhesion forces can be used to estimate wettability locally. Current research, however, shows that the correlation is not trivial. Moreover, adhesion force measurement via AFM has not been used extensively in studies with geological samples yet. In this study, the adhesion force values of the cantilever tip interaction with quartz inclusion on the shale sample surface, have been measured using the AFM technique. The adhesion force measured in this particular case was equal to the capillary force of water meniscus, formed between the sample surface and the cantilever tip. Experiments were conducted with a SiconG cantilever with (tip radius of 5 nm). The adhesion forces between quartz grain and cantilever tip were equal to 56.5 ± 5 nN. Assuming the surface of interaction to be half spherical, the adhesion force per area was 0.36 ± 0.03 nN/nm2. These measurements and results acquired at nano-scale will thus create a path towards much higher accuracy-wettability measurements and consequently better reservoir-scale predictions and improved underground operations.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Capillarity in porous media: Recent advances and challenges;Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3