Labile soil organic matter pools under a mixed grass/lucerne pasture and adjacent native bush in Western Australia

Author:

Macdonald A. J.,Murphy D. V.,Mahieu N.,Fillery I. R. P.

Abstract

Total C and N were measured in whole soils (0–0.15, 0.15–0.35, and 0.35–0.65 m), light organic matter fractions (<1 g/cm3 (LF 1.0) and 1.0–1.7 g/cm3 (LF 1.7)) in surface soils, and in leaf litter collected from a mixed grass/lucerne pasture and adjacent native bush at Moora, Western Australia. The C content of the plant material and light fractions was characterised by 13C cross-polarisation/magic angle spinning nuclear magnetic resonance (13C CP/MAS NMR) spectroscopy. Water-extractable organic C (WEOC) and N (WEON) were measured in soil, and dissolved organic C (DOC) and N (DON) were measured in soil solutions. In addition, both NO3-N and NH4-N (SMN) were measured in soil solutions and water extracts. Total soil C (0–0.65 m) did not differ significantly between land uses, but there was clear evidence of N enrichment under the pasture system, which contained significantly (P < 0.05) more total N in the surface soil (0–0.15 m) compared with that under native bush. The significantly (P < 0.05) smaller C/N ratios of the surface soil, plant litter, and light fractions (LF 1.0 and 1.7) under the pasture provided further evidence of N enrichment. The 13C CP/MAS NMR spectra for plant material and light fractions did not differ greatly between landuses, but in both cases the O-alkyl : alkyl carbon ratio declined with increasing density. The decomposition and subsequent mineralisation of the relatively N-rich organic matter fractions in the pasture system may have contributed to the significantly (P < 0.05) greater DOC, DON, and SMN concentration measured in soil solutions under pasture compared with those under native bush.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3