The early embryo response to intracellular reactive oxygen species is developmentally regulated

Author:

Bain Nathan T.,Madan Pavneesh,Betts Dean H.

Abstract

In vitro embryo production (IVP) suffers from excessive developmental failure. Its inefficiency is linked, in part, to reactive oxygen species (ROS) brought on by high ex vivo oxygen (O2) tensions. To further delineate the effects of ROS on IVP, the intracellular ROS levels of early bovine embryos were modulated by: (1) varying O2 tension; (2) exogenous H2O2 treatment; and (3) antioxidant supplementation. Although O2 tension did not significantly affect blastocyst frequencies (P > 0.05), 20% O2 accelerated the rate of first cleavage division and significantly decreased and increased the proportion of permanently arrested 2- to 4-cell embryos and apoptotic 9- to 16-cell embryos, respectively, compared with embryos cultured in 5% O2 tension. Treatment with H2O2, when applied separately to oocytes, zygotes, 2- to 4-cell embryos or 9- to 16-cell embryos, resulted in a significant (P < 0.05) dose-dependent decrease in blastocyst development in conjunction with a corresponding increase in the induction of either permanent embryo arrest or apoptosis in a stage-dependent manner. Polyethylene glycol–catalase supplementation reduced ROS-induced embryo arrest and/or death, resulting in a significant (P < 0.05) increase in blastocyst frequencies under high O2 culture conditions. Together, these results indicate that intracellular ROS may be signalling molecules that, outside an optimal range, result in various developmentally regulated modes of embryo demise.

Publisher

CSIRO Publishing

Subject

Developmental Biology,Endocrinology,Genetics,Molecular Biology,Animal Science and Zoology,Reproductive Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3