Iron fortification of food crops through nanofertilisation

Author:

Chugh GauravORCID,Siddique Kadambot H. M.ORCID,Solaiman Zakaria M.ORCID

Abstract

Micronutrient deficiencies are a significant cause of malnutrition worldwide, particularly in developing countries, affecting nearly 1.8 billion people worldwide. Agriculture is the primary source of nutrients for humans, but the increasing population and reducing arable lands areas are putting the agricultural sector under pressure, particularly in developing and less developed countries, and calls for intensive farming to increase crop yield to overcome food and nutrients deficiency challenges. Iron is an essential microelement that plays a vital role in plant and human growth, and metabolism, but its deficiency is widely reported and affects nearly one-third of the world population. To combat micronutrient deficiency, crops must have improved nutritional qualities or be biofortified. Several biofortification programs with conventional breeding, biotechnological and agronomic approaches have been implemented with limited success in providing essential nutrients, especially in developing and under-developed countries. The use of nanofertilisers as agronomic biofortification method to increase yields and nutrients, micronutrient availability in soil and uptake in plant parts, and minimising the reliance on harmful chemical fertilisers is essential. Using nanoparticles as nanofertilisers is a promising approach for improving the sustainability of current agricultural practices and for the biofortification of food crop production with essential micronutrients, thus enhanced nutritional quality. This review evaluates the current use of iron nanofertilisers for biofortification in several food crops addressing critical knowledge gaps and challenges that must be addressed to optimise the sustainable application.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3