Exogenous application of spermidine mitigates the adverse effects of drought stress in faba bean (

Author:

Abid GhassenORCID,Ouertani Rim NefissiORCID,Ghouili Emna,Muhovski Yordan,Jebara Salwa Harzalli,Abdelkarim Souhir,Chaieb Oumaima,Ben Redjem Yosr,El Ayed Mohamed,Barhoumi Fathi,Souissi Fatma,Jebara Moez

Abstract

In Tunisia, drought stress is a major environmental factor limiting crop production and causing relatively low and unstable faba bean yields. In the present study, we explored the putative role of spermidine (0.5, 1, 1.5 and 2 mM) in ameliorating the effects of drought stress induced by polyethylene glycol (PEG-6000, −0.58 MPa) in faba bean seedlings. Drought stress reduced photosynthetic performance, chlorophyll and relative water content in leaves of faba bean variety Badii. Moreover, drought increased proline, electrolyte leakage and malondialdehyde content by inducing reactive oxygen species (hydrogen peroxide) generation in leaves. However, applying spermidine increased the activities of catalase, superoxide dismutase, ascorbate peroxidase and guaiacol peroxidase. The results show that the application of spermidine especially at a rate of 1.5 mM effectively reduces oxidative damage and alleviates negative effects caused by drought stress. In addition, exogenous spermidine increased the expression of polyamine biosynthetic enzymes’ genes (VfADC, VfSAMDC and VfSPDS), and reduced the expression of VfSPMS suggesting that exogenous spermidine can regulate polyamines’ metabolic status under drought challenge, and consequently may enhance drought stress tolerance in faba bean. Real-time quantitative polymerase chain reaction analysis revealed that some drought responsive genes (VfNAC, VfHSP, VfNCED, VfLEA, VfCAT, VfAPX, VfRD22, VfMYB, VfDHN, VfERF, VfSOD and VfWRKY) from various metabolic pathways were differentially expressed under drought stress. Overall, these genes were more abundantly transcribed in the spermidine-treated plants compared to untreated suggesting an important role of spermidine in modulating faba bean drought stress response and tolerance.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3