Agro-physiological and biochemical responses of faba bean (Vicia faba L. var. ‘minor’) genotypes to water deficit stress

Author:

Abid Ghassen,Hessini Kamel,Aouida Marwa,Aroua Ibtissem,Baudoin Jean-Pierre,Muhovski Yordan,Mergeai Guy,Sassi Khaled,Machraoui Myriam,Souissi Fatma,Jebara Moez

Abstract

Description of the subject. Drought is one of the major abiotic factors affecting growth and productivity of plants by imposing certain morphological, physiological and biochemical changes at different growth stages. Objectives. The objective of this work is to study key morphological, physiological and biochemical responses of faba bean (Vicia faba L. var. ‘minor’) to soil water deficit stress and to assess the contribution of genetic factors in improving faba bean tolerance to water deficit. Method. Plants of 11 faba bean cultivars were grown in the greenhouse and subjected to three levels of water deficit (90, 50 and 30% of field capacity [FC]) in a simple randomized design for 20 days. Water deficit effects on plant growth, relative water content (RWC), gas exchange, chlorophyll a (Chla) and chlorophyll b (Chlb) content, osmoprotectant accumulations (such as proline and soluble sugars), antioxidant enzyme activities and grain yield were determined. Results. Soil water deficit stress reduced growth and affected physiological parameters, especially antioxidant enzyme activities. Water deficit also increased proline, soluble sugars and protein contents. The studied cultivars significantly differed in their responses to water deficit stress. Photosynthetic parameters were less affected in the ‘Hara’ cultivar. Furthermore, this cultivar produced the highest value of grain yield at 30% FC, and showed higher antioxidant enzyme activities (CAT, GPX and APX), osmoprotectant accumulations, Chlb and RWC. The ‘Hara’ cultivar was found to be more tolerant to water deficit stress than the other cultivars. Conclusions. Our methodology can be used for assessing the response of faba bean genetic resources to soil water deficit. The identified tolerant cultivar can be utilized as a source for water stress tolerance in faba bean breeding programs aimed at improving drought tolerance.

Publisher

University of Liege

Subject

Plant Science,Agronomy and Crop Science,Geography, Planning and Development,Biotechnology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3