Optical Properties and van der Waals - London Dispersion Interactions of Polystyrene Determined by Vacuum Ultraviolet Spectroscopy and Spectroscopic Ellipsometry

Author:

French Roger H.,Winey Karen I.,Yang Min K.,Qiu Weiming

Abstract

The interband optical properties of polystyrene in the vacuum ultraviolet (VUV) region have been investigated using combined spectroscopic ellipsometry and VUV spectroscopy. Over the range 1.5–32 eV, the optical properties exhibit electronic transitions we assign to three groupings, E1, E2, and E3, corresponding to a hierarchy of interband transitions of aromatic (π → π*), non-bonding (n → π*, n → σ*), and saturated (σ → σ*) orbitals. In polystyrene there are strong features in the interband transitions arising from the side-chain π bonding of the aromatic ring consisting of a shoulder at 5.8 eV (E1′) and a peak at 6.3 eV (E1), and from the σ bonding of the C–C backbone at 12 eV (E3′) and 17.1 eV (E3). These E3 transitions have characteristic critical point line shapes associated with one-dimensionally delocalized electron states in the polymer backbone. A small shoulder at 9.9 eV (E2) is associated with excitations possibly from residual monomer or impurities. Knowledge of the valence electronic excitations of a material provides the necessary optical properties to calculate the van der Waals–London dispersion interactions using Lifshitz quantum electrodynamics theory and full spectral optical properties. Hamaker constants and the van der Waals–London dispersion component of the surface free energy for polystyrene were determined. These Lifshitz results were compared to the total surface free energy of polystyrene, polarity, and dispersive component of the surface free energy as determined from contact angle measurements with two liquids, and with literature values. The Lifshitz approach, using full spectral Hamaker constants, is a more direct determination of the van der Waals–London dispersion component of the surface free energy of polystyrene than other methods.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3