Practical Challenges in Nanofluid Convective Heat Transfer Inside Silicon Microchannels

Author:

Eneren Pinar1ORCID,Aksoy Yunus Tansu1ORCID,Vetrano Maria Rosaria1ORCID

Affiliation:

1. Department of Mechanical Engineering, Division of Applied Mechanics and Energy Conversion (TME), KU Leuven, B-3001 Leuven, Belgium

Abstract

Despite numerous studies on nanofluids in microchannel heat sinks (MCHSs), they are not yet commercialized due to long-term stability issues and high maintenance costs. Therefore, this study explores the impact of nanofluids and nanoparticle clustering on single-phase convective heat transfer inside microchannels under laminar conditions. Water and commercially available water-based nanosuspensions, including Al2O3-water (30–60 nm), TiO2-water (5–30 nm), and polystyrene-water (50 nm), are circulated through silicon MCHS having rectangular channels integrated into a closed flow loop. To assess the in situ and real-time nanoparticle clustering during heat transfer experiments, Light Extinction Spectroscopy (LES) is applied as a non-intrusive measurement technique on nanofluids without any fluid sampling. Our findings reveal the appearance of nanofluid discoloration with no measurable increase in heat transfer coefficient. This unexpected change is attributed to the interplay of abrasion, erosion, and corrosion phenomena, likely triggered by the clustering of nanoparticles within the silicon microchannels—a novel insight into the complex dynamics of nanofluid behavior (an increase in the De Brouckere mean diameter from 11 nm to 107.3 nm over a 2.5 h period for TiO2 nanoparticles). The resulting material loss could not be mitigated by altering the nanoparticle material, which may impede heat transfer enhancement under tested conditions.

Funder

Interne Fondsen KU Leuven/Internal Funds KU Leuven

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3