Evolving research directions in Surface Ocean - Lower Atmosphere (SOLAS) science

Author:

Law Cliff S.,Brévière Emilie,de Leeuw Gerrit,Garçon Véronique,Guieu Cécile,Kieber David J.,Kontradowitz Stefan,Paulmier Aurélien,Quinn Patricia K.,Saltzman Eric S.,Stefels Jacqueline,von Glasow Roland

Abstract

Environmental context Understanding the exchange of energy, gases and particles at the ocean–atmosphere interface is critical for the development of robust predictions of, and response to, future climate change. The international Surface Ocean–Lower Atmosphere Study (SOLAS) coordinates multi-disciplinary ocean–atmosphere research projects that quantify and characterise this exchange. This article details five new SOLAS research strategies – upwellings and associated oxygen minimum zones, sea ice, marine aerosols, atmospheric nutrient supply and ship emissions – that aim to improve knowledge in these critical areas. Abstract This review focuses on critical issues in ocean–atmosphere exchange that will be addressed by new research strategies developed by the international Surface Ocean–Lower Atmosphere Study (SOLAS) research community. Eastern boundary upwelling systems are important sites for CO2 and trace gas emission to the atmosphere, and the proposed research will examine how heterotrophic processes in the underlying oxygen-deficient waters interact with the climate system. The second regional research focus will examine the role of sea-ice biogeochemistry and its interaction with atmospheric chemistry. Marine aerosols are the focus of a research theme directed at understanding the processes that determine their abundance, chemistry and radiative properties. A further area of aerosol-related research examines atmospheric nutrient deposition in the surface ocean, and how differences in origin, atmospheric processing and composition influence surface ocean biogeochemistry. Ship emissions are an increasing source of aerosols, nutrients and toxins to the atmosphere and ocean surface, and an emerging area of research will examine their effect on ocean biogeochemistry and atmospheric chemistry. The primary role of SOLAS is to coordinate coupled multi-disciplinary research within research strategies that address these issues, to achieve robust representation of critical ocean–atmosphere exchange processes in Earth System models.

Publisher

CSIRO Publishing

Subject

Geochemistry and Petrology,Environmental Chemistry,Chemistry (miscellaneous)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3