Machine learning algorithms for the automated classification of contaminated maize at regulatory limits via infrared attenuated total reflection spectroscopy

Author:

Öner T.1,Thiam P.2,Kos G.3,Krska R.34,Schwenker F.2,Mizaikoff B.1

Affiliation:

1. Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.

2. Institute of Neural Information Processing, Ulm University, James-Franck-Ring, 89081 Ulm, Germany.

3. Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Austria.

4. Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, United Kingdom.

Abstract

Mould infested maize poses a severe problem for farmers, food producers and for consumers worldwide. Mycotoxins are secondary metabolites produced by certain mould species that contaminate food and feed. The consumption of these toxins may cause serious health problems for humans and animals. The trichothecene deoxynivalenol (DON) constitutes one of the most commonly occurring Fusarium toxins encountered in maize and requires improved methods to limit its entrance into the food and feed system. While a variety of chromatographic and mass spectrometry methods for the identification of such toxins have been established, these are considered time-consuming, cost-intensive and require highly qualified personnel. Alternatively, optical techniques, such as mid-infrared spectroscopy offer rapid detection of fungal infections in cereals and other commodities with minimised sample preparation and analysis time. The present study demonstrates a rapid fungal contamination detection strategy in maize taking advantage of IR-spectroscopy combined with advanced machine learning algorithms. The developed method represents an advancement for the analysis of differences in protein and carbohydrate content revealed in the associated IR-spectra related to the amount of toxin contamination at the European Union (EU) regulatory limits for DON in maize (i.e. 1,250 μg/kg). The employed maize varieties are naturally infected samples or have been infected with Fusarium verticillioides, Fusarium graminearum or Fusarium culmorum. Sieved maize samples at the EU regulatory limit were correctly classified using machine learning approaches, therefore enabling the differentiation between DON-contaminated and non-contaminated maize samples. Specifically, a variety of machine learning methods, including Adaptive Boosting (AdaBoost), Random Forests, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) demonstrated excellent classification and validation performance using the obtained IR-spectra. As a result, 183 maize samples of different varieties and infection levels were accurately classified. 94% of the non-contaminated samples and 91% of the contaminated samples were correctly classified using an MLP classification approach.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3