Aflatoxins and Saccharomyces cerevisiae: yeast modulates the intestinal effect of aflatoxins, while aflatoxin B1 influences yeast ultrastructure

Author:

Dogi C.1,Cristofolini A.2,Pereyra M.L. González1,García G.1,Fochesato A.1,Merkis C.2,Dalcero A.M.1,Cavaglieri L.R.1

Affiliation:

1. Departamento de Microbiología e Inmunología, Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina.

2. Departamento de Microscopía Electrónica, Universidad Nacional de Río Cuarto, Ruta 36 km 601, 5800 Río Cuarto, Córdoba, Argentina.

Abstract

The gastrointestinal tract (GIT) is the main site where absorption of food components takes place and the first system coming into contact with mycotoxins of dietary origin. The aim of this work was to study the effect of probiotic Saccharomyces cerevisiae RC016 on intestinal villi of rats exposed to aflatoxins for 60 days. Moreover, the effect of in vitro aflatoxin B1 (AFB1) exposure on yeast cell ultrastructure was evaluated. Six treatments were applied (n=6) to inbred male Wistar rats: (1) uncontaminated feed control (F); (2) yeast control; (3) F + 40 μg/kg AFB1 + 20 μg/kg aflatoxin G1 (AFG1); (4) F + 100 μg/kg AFB1 + 50 μg/kg AFG1; (5) F + 40 μg/kg AFB1 + 20 μg/kg AFG1 + daily oral dose 108 viable S. cerevisiae cells; and (6) F + 100 μg/kg AFB1 + 50 μg/kg AFG1 + daily oral dose 108 viable S. cerevisiae cells. Morphometric measurements (villus length and width, crypt depth, quantification of goblet cells) were assessed using image analysis. S. cerevisiae RC016 cells were exposed to 20 μg/ml of AFB1 in intestinal solutions or in phosphate buffered saline and cells processed for transmission electron microscopy and high resolution light microscopy studies. Dietary exposure to the yeast did not induce significant differences in villus width but increased villus length and crypt depth. Aflatoxin-contaminated diets induced an increase in villus length, width and crypt depth and a significant decrease in the number of goblet cells which were improved by the addition of S. cerevisiae RC016. A significant increase in the yeast cell diameter was observed when RC016 was exposed to aflatoxins, suggesting this as an advantage since a larger cell would be able to adsorb mycotoxins more efficiently. The ability of this strain to act as probiotic and aflatoxin binder makes it a candidate for the formulation of new additives to improve animal performance.

Publisher

Wageningen Academic Publishers

Subject

Public Health, Environmental and Occupational Health,Toxicology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3