Decontamination of Raw Foods Using Ozone-Based Sanitization Techniques

Author:

Perry Jennifer J.1,Yousef Ahmed E.1

Affiliation:

1. Department of Food Science and Technology, The Ohio State University, Columbus, Ohio;,

Abstract

Popular foods such as fresh produce and dry nuts are increasingly implicated in outbreaks of food-transmitted diseases. These products are not amenable to conventional processing technologies; therefore, many alternative decontamination methods are actively investigated. Ozone is a versatile sanitizer with promising applications in some high-risk foods. This antimicrobial agent is active against a broad spectrum of microorganisms, and it can be used effectively in its gaseous or aqueous state. The flexibility afforded by ozone use makes it a viable option for application on easy-to-damage products like fresh produce. If process parameters are adequately controlled, ozone treatment can enhance safety and increase shelf life without adversely affecting product quality. Despite these advantages, ozone may not be suitable for some applications, including treatment of liquid foods and products rich in unsaturated fats and soluble proteins. Ozone, as a powerful oxidizer, must be carefully controlled at all times, and equipment must be rigorously maintained to ensure safety of workers.

Publisher

Annual Reviews

Subject

Food Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling the Reactivity of Oxygen and Ozone on C2N Monolayer;physica status solidi (RRL) – Rapid Research Letters;2024-08-22

2. Research Progress on Bacteria-Reducing Pretreatment Technology of Meat;Foods;2024-07-26

3. New Alternatives to Preserve Fresh Vegetables and Fruits from Postharvest Fungal Spoilage;Recent Advances in Postharvest Technologies, Volume 1;2024

4. Innovative Technologies and Shelf-Life Extension of Citrus Fruit;Recent Advances in Postharvest Technologies, Volume 1;2024

5. Applications of ozone in medical, medicine, and dentistry sciences;Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3