Unveiling the Reactivity of Oxygen and Ozone on C2N Monolayer

Author:

Das Soumendra Kumar1,Patra Lokanath2,Samal Prasanjit1ORCID,Sahoo Pratap Kumar1ORCID

Affiliation:

1. School of Physical Sciences National Institute of Science Education and Research (NISER) Bhubaneswar An OCC of Homi Bhabha National Institute Jatni Odisha 752050 India

2. Department of Mechanical Engineering University of California Santa Barbara Santa Barbara CA 93106 USA

Abstract

Understanding the interaction of various environmental oxidizing agents is important in determining the physical and chemical properties of 2D materials. Its impact holds great significance for the practical application of these materials in nanoscale devices functioning under ambient conditions. This study delves into the influence of O2 and O3 exposure on the structural and electronic characteristics of the C2N monolayer, focusing on the kinetics of adsorption and dissociation reactions. Employing first‐principles density‐functional theory calculations alongside climbing image nudged elastic band calculations, it is observed that the monolayer exhibits resistance to ozonation, evidenced by energy barriers of 0.56 eV. These processes are accompanied by the formation of COC groups. Furthermore, the dissociation mechanism involves charge transfers from the monolayer to the molecules. Notably, the dissociated configurations demonstrate higher bandgaps compared to the pristine monolayer, attributed to robust CO hybridization. These findings suggest the robustness of C2N monolayers against oxygen/ozone exposures, ensuring stability for devices incorporating these materials.

Funder

Department of Atomic Energy, Government of India

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3