Hypoxia Tolerance in Mammals and Birds: From the Wilderness to the Clinic

Author:

Ramirez Jan-Marino1,Folkow Lars P.2,Blix Arnoldus S.2

Affiliation:

1. Department of Organismal Biology & Anatomy, University of Chicago, Chicago, Illinois 60637;

2. Department of Arctic Biology, University of Tromso, Tromso, N-9037 Norway;,

Abstract

All mammals and birds must develop effective strategies to cope with reduced oxygen availability. These animals achieve tolerance to acute and chronic hypoxia by (a) reductions in metabolism, (b) the prevention of cellular injury, and (c) the maintenance of functional integrity. Failure to meet any one of these tasks is detrimental. Birds and mammals accomplish this triple task through a highly coordinated, systems-level reconfiguration involving the partial shutdown of some but not all organs. This reconfiguration is achieved through a similarly complex reconfiguration at the cellular and molecular levels. Reconfiguration at these various levels depends on numerous factors that include the environment, the degree of hypoxic stress, and developmental, behavioral, and ecological conditions. Although common molecular strategies exist, the cellular and molecular changes in any given cell are very diverse. Some cells remain metabolically active, whereas others shut down or rely on anaerobic metabolism. This cellular shutdown is temporarily regulated, and during hypoxic exposure, active cellular networks must continue to control vital functions. The challenge for future research is to explore the cellular mechanisms and conditions that transform an organ or a cellular network into a hypometabolic state, without loss of functional integrity. Much can be learned in this respect from nature: Diving, burrowing, and hibernating animals living in diverse environments are masters of adaptation and can teach us how to deal with hypoxia, an issue of great clinical significance.

Publisher

Annual Reviews

Subject

Physiology

Cited by 224 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3