Adaptive evolution of antioxidase-related genes in hypoxia-tolerant mammals

Author:

Wang Qiu-Ping,Luo Chao-Yang,Xu Xiong-Hui,Hu Wen-Xian,Gai Yu-Lin,Gong You-Jing,Mu Yuan

Abstract

To cope with the damage from oxidative stress caused by hypoxia, mammals have evolved a series of physiological and biochemical traits, including antioxidant ability. Although numerous research studies about the mechanisms of hypoxia evolution have been reported, the molecular mechanisms of antioxidase-related genes in mammals living in different environments are yet to be completely understood. In this study, we constructed a dataset comprising 7 antioxidase-related genes (CAT, SOD1, SOD2, SOD3, GPX1, GPX2, and GPX3) from 43 mammalian species to implement evolutionary analysis. The results showed that six genes (CAT, SOD1, SOD2, SOD3, GPX1, and GPX3) have undergone divergent evolution based on the free-ratio (M1) model. Furthermore, multi-ratio model analyses uncovered the divergent evolution between hypoxic and non-hypoxic lineages, as well as various hypoxic lineages. In addition, the branch-site model identified 9 positively selected branches in 6 genes (CAT, SOD1, SOD2, SOD3, GPX2, and GPX3) that contained 35 positively selected sites, among which 31 positively selected sites were identified in hypoxia-tolerant branches, accounting for 89% of the total number of positively selected sites. Interestingly, 65 parallel/convergent sites were identified in the 7 genes. In summary, antioxidase-related genes are subjected to different selective pressures among hypoxia-tolerant species living in different habitats. This study provides a valuable insight into the molecular evolution of antioxidase-related genes in hypoxia evolution in mammals.

Publisher

Frontiers Media SA

Reference55 articles.

1. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax;Avivi;Proc. Natl. Acad. Sci. U.S.A.,2010

2. Catalase: a critical node in the regulation of cell fate;Baker;Free Radic. Biol. Med.,2023

3. Andean and Tibetan patterns of adaptation to high altitude;Bigham;Am. J. Hum. Biol.,2013

4. Oxidative stress and antioxidant defense;Birben;World Allergy Organ. J.,2012

5. The pymol molecular graphics system;Delano;Proteins,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3