Selection Method of Quasi-Continuous Wavelength Combination with Applications to the Near-Infrared Spectroscopic Analysis of Soil Organic Matter

Author:

Pan Tao1,Li Minmiao1,Chen Jiemei12

Affiliation:

1. Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Educational Institutes, Jinan University, Guangzhou 510632, China

2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

Abstract

Equidistant combination multiple linear regression (EC-MLR) for the quasi-continuous wavelength selection of spectroscopic analysis was proposed and successfully applied to the reagent-free determination of soil organic matter with near-infrared spectroscopy. For comparison, the continuous-mode moving window partial least squares (MWPLS) and the discrete-mode successive projections algorithm (SPA) were improved by considering the stability and applied to the same analysis object as well. All methods exhibited good effect, but the modeling accuracy, stability, and validation effect of EC-MLR were better than that of the other two methods. Compared with MWPLS, the optimal EC-MLR model contained only 16 wavelengths, and method complexity was substantially reduced. Compared with SPA-MLR, the optimal EC-MLR model could easily undergo spectral preprocessing to improve predictive capability. Moreover, appropriate equidistant discrete wavelength combination with EC-MLR corresponded to the spectral absorption band with proper resolution and can effectively overcome co-linearity interruption for the MLR model. Thus, the EC-MLR method has great potential in practical application and instrument design.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3