Implementation of a Neural Network for Multispectral Luminescence Imaging of Lake Pigment Paints

Author:

Chane Camille Simon1,Thoury Mathieu2,Tournié Aurélie2,Echard Jean-Philippe1

Affiliation:

1. Musée de la musique, Equipe Conservation Recherche, Cité) de la musique, 221 avenue Jean Jaurès, 75019 Paris, France

2. Centre de Recherche sur la Conservation des Collections MNHN/CNRS/MCC, 36 rue Geoffroy Saint-Hilaire, 75005 Paris, France

Abstract

Luminescence multispectral imaging is a developing and promising technique in the fields of conservation science and cultural heritage studies. In this article, we present a new methodology for recording the spatially resolved luminescence properties of objects. This methodology relies on the development of a lab-made multispectral camera setup optimized to collect low-yield luminescence images. In addition to a classic data preprocessing procedure to reduce noise on the data, we present an innovative method, based on a neural network algorithm, that allows us to obtain radiometrically calibrated luminescence spectra with increased spectral resolution from the low-spectral resolution acquisitions. After preliminary corrections, a neural network is trained using the 15-band multispectral luminescence acquisitions and corresponding spot spectroscopy luminescence data. This neural network is then used to retrieve a megapixel multispectral cube between 460 and 710 nm with a 5 nm resolution from a low-spectral-resolution multispectral acquisition. The resulting data are independent from the detection chain of the imaging system (filter transmittance, spectral sensitivity of the lens and optics, etc.). As a result, the image cube provides radiometrically calibrated emission spectra with increased spectral resolution. For each pixel, we can thus retrieve a spectrum comparable to those obtained with conventional luminescence spectroscopy. We apply this method to a panel of lake pigment paints and discuss the pertinence and perspectives of this new approach.

Publisher

SAGE Publications

Subject

Spectroscopy,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3