Performances of a portable Fourier transform hyperspectral imaging camera for rapid investigation of paintings

Author:

Candeo AlessiaORCID,Ardini Benedetto,Ghirardello Marta,Valentini Gianluca,Clivet Laurence,Maury Charlotte,Calligaro Thomas,Manzoni Cristian,Comelli Daniela

Abstract

Abstract Scientific investigation in the cultural heritage field is generally aimed at the characterization of the constituent materials and the conservation status of artworks. Since the 1990s, reflectance spectral imaging proved able to map pigments, reveal hidden details and evaluate the presence of restorations in paintings. Over the past two decades, hyperspectral imaging has further improved our understanding of paints and of its changes in time. In this work, we present an innovative hyperspectral camera, based on the Fourier transform approach, utilising an ultra-stable interferometer and we describe its advantages and drawbacks with respect to the commonly used line- and spectral-scanning methods. To mitigate the weaknesses of the Fourier transform hyperspectral imaging, we propose a strategy based on the virtual extension of the dynamic range of the camera and on the design of an illumination system with a balanced emission throughout the spectral range of interest. The hyperspectral camera was employed for the analysis of a painting from the “Album of Nasir al-din Shah”. By applying analysis routines based on supervised spectral unmixing, we demonstrate the effectiveness of our camera for pigment mapping. This work shows how the proposed hyperspectral imaging camera based on the Fourier transform is a promising technique for robust and compact in situ investigation of artistic objects in conditions compatible with museum and archaeological sites. Graphic abstract

Funder

Open access funding provided by Politecnico di Milano within the CRUI-CARE Agreement.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3