A novel photoluminescence hyperspectral camera for the study of artworks

Author:

Ghirardello MartaORCID,Manzoni Cristian,Gironda Michele,Alberti Roberto,Lenz Roland,Zöldföldi Judit,Behrendt Sonja,Paz Boaz,Valentini Gianluca,Comelli DanielaORCID

Abstract

AbstractWe present the application of a novel hyperspectral camera, based on the Fourier-transform approach, to study the photoluminescence emission from artworks at different spatial scales and emission timescales. The hyperspectral system relies on an innovative wide-field, compact and ultra-stable interferometer coupled to different excitation and detection methods. Here, we describe and illustrate the potentialities and limitations of its use when coupled with excitation at variable fluence and with time-gated detection. The developed methods allow an in-depth characterization of the optical emission from luminescent materials in cultural heritage and provide information on the nature of the recombination pathways in crystalline pigments. Indeed, one of the main difficulties in the interpretation of the optical emission from artworks is the presence of multiple emitting compounds with spectra characterized by broad emission bands. The photoluminescence imaging methods here proposed allow to partially solve this issue, by separating emission from different materials on the basis of their different timescales and spectral emission properties, thus providing important information to support material identification. Furthermore, the high spectral accuracy achievable with a hyperspectral camera, such as the one proposed in this paper, allows the collection of highly resolved spectral datacubes, which can then be post-processed with computational and multivariate statistical analysis methods to better assess material identification and mapping.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3