Nonlinear model predictive control of a class of continuum robots using kinematic and dynamic models

Author:

Amouri Ammar,Cherfia Abdelhakim,Merabti Halim,Laib Dit

Abstract

Controlling continuum robots with precision is particularly a challenging task due to the complexity of their mathematical models and inaccuracies in modeling approaches. Therefore, most advanced control schemes have shown poor performances, especially in trajectory tracking accuracy. This paper presents a proposed Nonlinear Model Predictive Control (NMPC) scheme to solve the trajectory tracking of a class of continuum robots, namely Cable-Driven Continuum Robot (CDCR). However, since NMPC schemes are often limited by the computational burden associated with the optimization algorithms to be solved at each sampling time, the Particle Swarm Optimization (PSO) algorithm is used to solve the arising optimization problem NMPC, thanks to its simplicity and fast convergence. The proposed NMPC-PSO scheme is applied to the developed kinematic and dynamic models of the considered CDCR. Based on the kinematic and dynamic model, the two proposed controllers have been validated against numerical simulations of two-dimensional CDCR with two bending sections for set-point stabilization and point-to-point trajectory tracking. For both controllers, the performance of tracking accuracy and computation time is analyzed and compared. Moreover, the obtained simulation results are compared to the available literature works. In view of the results obtained on the considered CDCR, the proposed NMPC-PSO scheme can track in real-time the desired trajectory with high accuracy and much less execution time than other advanced control schemes, which makes it an alternative for real-time applications.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3