Dynamics of a spherical enclosure in a liquid during ultrasonic cavitation

Author:

Kuznetsova Elena,Fedotenkov Gregory

Abstract

The paper investigates the process of pulsation of a spherical cavity (bubble) in a liquid under the influence of a source of ultrasonic vibrations. The pulsation of a spherical cavity is described by the Kirkwood-Bethe equations, which are one of the most accurate mathematical models of pulsation processes at an arbitrary velocity of the cavity boundary. The Kirkwood-Bethe equations are essentially non-linear, therefore, to construct solutions and parametric analysis of the bubble collapse process under the influence of ultrasound, a numerical algorithm based on the Runge-Kutta method in the Felberg modification of the 4-5th order with an adaptive selection of the integration step in time has been developed and implemented. The proposed algorithm makes it possible to fully describe the process of cavitation pulsations, to carry out comprehensive parametric studies, and to evaluate the influence of various process parameters on the intensity of cavitation. As an example, the results of calculating the process of pulsation of the cavitation pocket in water are given and the influence of the amplitude of ultrasonic vibrations and the initial radius on the process of cavitation of a single bubble is estimated.

Publisher

Centre for Evaluation in Education and Science (CEON/CEES)

Subject

Mechanical Engineering,General Engineering,Safety, Risk, Reliability and Quality,Transportation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Reference29 articles.

1. Pirsol, I. (1975). Cavitation. Mir, Moscow;

2. Rozhdestvensky, V.V. (1977). Cavitation. Shipbuilding, Leningrad;

3. Rosenberg, L.D. (1968). Cavitation area. Physics and technique of powerful ultrasound. Nauka, Moscow;

4. Rabinskiy, L.N., Tushavina, O.V. (2019). Investigation of an elastic curvilinear cylindrical shell in the shape of a parabolic cylinder, taking into account thermal effects during laser sintering. Asia Life Sciences, vol. 2, 977-991;

5. Kuznetsova, E.L., Rabinskiy, L.N. (2019). Linearization of radiant heat fluxes in the mathematical modeling of growing bodies by the action of high temperatures in additive manufacturing. Asia Life Sciences, vol. 2, 943-954;

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3