Design Calculations of the Limiting Characteristics of Heat Pipes for Cooling Active Phased Antenna Arrays

Author:

Radaev S.1

Affiliation:

1. Moscow Aviation Institute (National Research University), Moscow, Volokolamskoe shosse 4, 125993, RUSSIAN FEDERATION

Abstract

The article provides an algorithm for calculating the limiting characteristics of heat pipes for cooling active phased antenna arrays at a given saturation temperature. The maximum transmitted power is determined taking into account the limitations of the heat pipes operation by the capillary limit, by boiling (transition to film boiling, boiling limit), by the sonic limit at which the speed of steam reaches the speed of sound (sonic limit), by the entrainment of droplets liquid coolant from the surface of the wick with a counter flow of steam (entertainment limit) and viscous limit, which is realized at low temperatures (viscous limit). It is shown that an increase in the thickness of the wick and its porosity may be necessary to increase the capillary limit of heat pipes, while an increase in the thickness of the wick increases the thermal resistance of the tube and, accordingly, can lead to overheating of the cooled elements. Based on the above algorithm, design calculations for two types of heat pipes have been carried out. The dependences of various limits of the heat pipe on the operating temperature are plotted. Based on the above algorithm, calculations were performed for two types of heat pipes.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3