Numerical Analysis of Deformation Characteristics of Elastic Inhomogeneous Rotational Shells at Arbitrary Displacements and Rotation Angles

Author:

Dmitriev Vladimir G.,Danilin Alexander N.,Popova Anastasiya R.,Pshenichnova Natalia V.

Abstract

Adequate mathematical models and computational algorithms are developed in this study to investigate specific features of the deformation processes of elastic rotational shells at large displacements and arbitrary rotation angles of the normal line. A finite difference method (FDM) is used to discretize the original continuum problem in spatial variables, replacing the differential operators with a second-order finite difference approximation. The computational algorithm for solving the nonlinear boundary value problem is based on a quasi-dynamic form of the ascertainment method with the construction of an explicit two-layer time-difference scheme of second-order accuracy. The influence of physical and mechanical characteristics of isotropic and composite materials on the deformation features of elastic spherical shells under the action of surface loading of “tracking” type is investigated. The results of the studies conducted have shown that the physical and mechanical characteristics of isotropic and composite materials significantly affect the nature of the deformation of the clamped spherical shell in both the subcritical and post-critical domains. The developed mathematical models and computational algorithms can be applied in the future to study shells of rotation made of hyperelastic (non-linearly elastic) materials and soft shells.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3