Cooling‐induced cutaneous vasodilatation is mediated by small‐conductance, calcium‐activated potassium channels in tail arteries from male mice

Author:

Chang Fumin1,Flavahan Sheila1,Flavahan Nicholas A.1ORCID

Affiliation:

1. Department of Anesthesiology Johns Hopkins University Baltimore Maryland USA

Abstract

AbstractCooling causes cutaneous dilatation to restrain cold‐induced constriction and prevent tissue injury. Cooling increases communication through myoendothelial gap junctions (MEGJs), thereby increasing endothelium‐derived hyperpolarization (EDH)‐type dilatation. EDH is initiated by calcium‐activated potassium channels (KCa) activated by endothelial stimuli or muscle‐derived mediators traversing MEGJs (myoendothelial feedback). The goal of this study was to determine the individual roles of KCa with small (SK3) and intermediate (IK1) conductance in cooling‐induced dilatation. Vasomotor responses of mice isolated cutaneous tail arteries were analyzed by pressure myography at 37°C and 28°C. Cooling increased acetylcholine‐induced EDH‐type dilatation during inhibition of NO and prostacyclin production. IK1 inhibition did not affect dilatations to acetylcholine, whereas SK3 inhibition inhibited dilatation at both temperatures. Cooling uncovered myoendothelial feedback to inhibit constrictions in U46619. IK1 inhibition did not affect U46619 constrictions, whereas SK3 inhibition abolished the inhibitory effect of cooling without affecting U46619 constriction at 37°C. Immunoblots confirmed SK3 expression, which was localized (immunofluorescence) to holes in the internal elastic lamina consistent with myoendothelial projections. Immunoblots and Immunofluorescence did not detect IK1. Studies in non‐cutaneous arteries have highlighted the predominant role of IK1 in EDH‐type dilatation. Cutaneous arteries are distinctly reliant on SK3, which may enable EDH‐type dilation to be amplified by cooling.

Funder

American Heart Association

Publisher

Wiley

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3