Rho Kinase Mediates Cold-Induced Constriction of Cutaneous Arteries

Author:

Bailey S.R.1,Eid A.H.1,Mitra S.1,Flavahan S.1,Flavahan N.A.1

Affiliation:

1. From the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus.

Abstract

Cold-induced vasoconstriction in cutaneous blood vessels is mediated in part by increased activity of vascular smooth muscle α2-adrenoceptors (VSM α2-ARs). In mouse cutaneous arteries, α2C-ARs are normally silent at 37°C but mediate cold-induced augmentation of α2-AR responsiveness. In transfected HEK293 cells, this functional rescue is mediated by cold-induced translocation of α2C-ARs from the Golgi to the plasma membrane. Experiments were performed to determine the role of Rho/Rho kinase signaling in this process. Inhibition of Rho kinase (fasudil, Y27632 or H-1152) did not affect constriction of isolated mouse tail arteries to the α2-AR agonist UK 14 304 at 37°C but dramatically reduced the augmented responses to the agonist at 28°C. After Rho kinase inhibition, cooling no longer increased constriction evoked by α2-AR stimulation. Cooling (to 28°C) activated Rho in VSM cells and increased the calcium sensitivity of constriction in α toxin-permeabilized arteries. Stimulation of α2-ARs in VSM cells had no effect on Rho activity or calcium sensitivity at 37°C or 28°C. In HEK293 cells transfected with α2C-ARs, cooling (to 28°C) stimulated the translocation of α2C-ARs to the plasma membrane and this effect was prevented by inhibition of Rho kinase, using fasudil or RNA interference. Consistent with inhibition of the spatial rescue of α2C-ARs, fasudil inhibited α2-AR–mediated mobilization of calcium in tail arteries at 28°C but not 37°C. Therefore, cold-induced activation of Rho/Rho kinase can mediate cold-induced constriction in cutaneous arteries by enabling translocation of α2C-ARs to the plasma membrane and by increasing the calcium sensitivity of the contractile process.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3