Interindividual variability in cold-pressor pain sensitivity is not explained by peripheral vascular responding and generalizes to a C-nociceptor–specific pain phenotype

Author:

Martel Richard D.ORCID,Papafragou Georgios,Weigand Sylvia,Rolke Roman1ORCID,Prawitt Dirk2ORCID,Birklein Frank1ORCID,Treede Rolf-DetlefORCID,Magerl WalterORCID

Affiliation:

1. Neurology and

2. Pediatric Medicine, Medical Center, Johannes Gutenberg University, Mainz, Germany

Abstract

Abstract Pain sensitivity of healthy subjects in the cold-pressor (CP) test was proposed to be dichotomously distributed and to represent a pain sensitivity trait. Still, it has not been systematically explored which factors influence this pain sensitivity readout. The aim of this study was to distinguish potential contributions of local tissue-related factors such as perfusion and thermoregulation or gain settings in nociceptive systems. Cold-pressor–sensitive and CP-insensitive students screened from a medical student laboratory course were recruited for a CP retest with additional cardiovascular and bilateral local vascular monitoring. In addition, comprehensive quantitative sensory testing according to Deutscher Forschungsverbund Neuropathischer Schmerz standards and a sustained pinch test were performed. Cold pressor was reproducible across sessions (Cohen kappa 0.61 ± 0.14, P < 0.005). At 30 seconds in ice water, CP-sensitive subjects exhibited not only more pain (78.6 ± 26.3 vs 29.5 ± 17.5, P < 0.0001) but also significantly stronger increases in mean arterial blood pressure (12.6 ± 9.3 vs 5.6 ± 8.1 mm Hg, P < 0.05) and heart rate (15.0 ± 8.2 vs 7.1 ± 6.2 bpm, P < 0.005), and lower baroreflex sensitivity, but not local or vasoconstrictor reflex–mediated microcirculatory responses. Cold-pressor–sensitive subjects exhibited significantly lower pain thresholds also for cold, heat, and blunt pressure, and enhanced pain summation, but no significant differences in Aδ-nociceptor–mediated punctate mechanical pain. In conclusion, differences in nociceptive signal processing drove systemic cardiovascular responses. Baroreceptor activation suppressed pain and cardiovascular responses more efficiently in CP-insensitive subjects. Cold-pressor sensitivity generalized to a pain trait of C-fiber–mediated nociceptive channels, which was independent of local thermal and vascular changes in the ice-water–exposed hand. Thus, the C-fiber pain trait reflects gain setting of the nociceptive system.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3