Fabrication and properties of non-balance electric bridge gas sensor based on a single Sb doped ZnO microwire

Author:

Feng Qiu-Ju,Shi Bo,Li Yun-Zheng,Wang De-Yu,Gao Chong,Dong Zeng-Jie,Xie Jin-Zhu,Liang Hong-Wei, ,

Abstract

Zinc oxide (ZnO) is a wide direct band gap (3.37 eV) II-VI semiconductor material with a wide range of applications in light emitting devices, solar cells, field emission devices, gas sensors, etc. Over the past decades, metal oxide semiconductors have been investigated extensively for sensing various types of vapors and toxic gases. Among the various metal oxides for gas sensing applications, ZnO is one of the potential materials for high response, stability and sensitivity to volatile organic gases. At present, the ZnO-based gas sensor has a relatively high operating temperature. However, the stability and lifetime of gas sensors operating under high temperature conditions with a long term will be greatly reduced. In addition, the power consumption of gas sensors is also significantly increased. Furthermore, there can exist the potential of explosion when gas sensors are used to detect the flammable gases at high temperature. Therefore, it is necessary to improve the sensing properties and reduce the operating temperature of gas sensors. In this paper, ultra-long, large-sized Sb doped ZnO microwires are successfully prepared by using chemical vapor deposition. The gas sensor is based on the principle of non-balance electric bridge, and a single Sb doped ZnO microwire is used as a bridge arm <i>R</i><sub>4</sub> of non-balance electric bridge to produce a gas sensor that can work at room temperature. The results show that the response-recovery curves of sensors at the acetone and ethanol concentrations of 20 ppm, 50 ppm, 100 ppm and 200 ppm (1 ppm = 10<sup>–6</sup>) are rectangular at room temperature, and have stable current values in air and measured gas, and the response value of the device gradually increases with gas concentration increasing. Furthermore, the detection of acetone and ethanol gas reveal that the device has better selectivity for acetone gas. The response of the gas sensor to 200 ppm acetone is about 243%, with response and recovery time of 0.2 s and 0.3 s, respectively. Compared with the traditional resistive gas sensor, this non-balanced electric bridge sensor has high response, fast response and recovery time. In addition, the sensing mechanism of the device is also studied.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3