Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide

Author:

Li Yan ,Li Jiao ,Chen Li-Li ,Lian Xiao-Xue ,Zhu Jun-Wu , ,

Abstract

Control and administration of various dangerous gases existing in the environment is very important both for safety in the workplace and for quality of daily life, such as acetone and ethanol, etc. Zinc oxide, a well-known n-type semiconductor with a direct wide band-gap of 3.37 eV, is a very promising gas sensing material. However, zinc oxide's limited selectivity, relatively long response/recovery time, high-power consumption, and lack of long-term stability have restricted its applications in high-standard gas detection. Therefore, increasing gas sensing selectivity is a crucial issue for ZnO application in the gas sensing field. So far, many researches have reported and discussed the effects of morphologies, structures, doping of gas sensing materials, on its sensing performance. In this work, we intend to investigate and theoretically analyze how the polarization of the external electric field affects gas sensing performance and selectivity. Zinc oxide nanoparticles, as a testing gas sensing material, are synthesized by simple precipitation method. Then they are pressed into a disc and polarized under an external electric field with different electric field intensities at different temperatures. The structure and Raman activity for each of the unpolarized ZnO and the polarized ZnO are characterized using X-ray diffraction and Raman spectrometry, respectively. The gas sensing performances of unpolarized and polarized ZnO based sensors to ethanol and acetone are carefully examined using a chemical gas sensing system. The mechanism of external electric field polarization effect on gas sensitivity is discussed. The results reveal that there exists a threshold value for each of voltage and temperature for ZnO polarization under an external electric field. When the voltage and temperature are over 9375 V·cm-1 and 150℃, respectively, the leakage of electricity in ZnO disk happens and the polarization effect gradually disappears. Within the above voltage and temperature limits, Raman peak intensity of the polarized ZnO at 437 cm-1 obviously decreases after external electric field polarization. The response of the polarized ZnO sensor to acetone increases with external electronic field and polarization temperature increasing, while the response to ethanol decreases, which indicates that external electric field polarization can effectively adjust the gas sensing selectivity of nano zinc oxide. Raman analysis indirectly shows that the enhanced gas sensing selectivity of ZnO by the polarization effect of the external electric field is due to oxygen vacancy and zinc vacancy directionally moving under the action of an external electric field. Thus it can be seen that the polarization of the external electric field acting on gas sensing material is a promising effective method to improve gas sensing selectivity.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3