Heat transport behavior of bicrystal ZnO containing tilt grain boundary

Author:

Liu Ying-Guang,Bian Yong-Qing,Han Zhong-He,

Abstract

Zinc oxide (ZnO), as a conventional semiconductor material, has excellent characteristics, such as piezoelectricity, photoelectricity, gas sensitivity, etc. With the improvement of nanopreparation technology, different types of nanostructrued ZnO compounds have appeared and their heat conductions have become a main research topic in nanodevices. In order to study the effects of grain boundary on the thermal properties of materials of this kind, bicrystal ZnO containing small-angle and high-angle grain boundaries are constructed by the embedded dislocation line and coincidence site lattice method. The variation of grain boundary energy with tilt angle is studied by the non-equilibrium molecular dynamics simulation. In addition, the dislocation density is calculated by using the Frank-Bilby formula. Our results show that the grain boundary energy and dislocation density increase with the increase of tilt angle in a small-angle region, and they tend to be stable in a high-angle region. The tilt angle of 36.86° is defined as the transition angle. The trend of the Kapitza resistance is the same as that of the grain boundary energy and satisfies the theoretical value from the extended Read-Shockley model. Furthermore, it is found that both the Kapitza resistance and thermal conductivity have a significant size effect. When the sample length is between 23.2 nm and 92.6 nm, the Kapitza resistance decreases sharply with the increase of the length and then tends to be stable. The thermal conductivity of the sample increases with length increasing, but is always less than that of the single crystal. At the same time, temperature is an important factor affecting the heat transport properties. The Kapitza resistance and thermal conductivity decrease with temperature increasing. At different temperatures, the Kapitza resistance of 38.94° grain boundary sample is greater than that of 5.45° grain boundary sample. In order to further explore the influence mechanism of grain boundary angle on heat conduction, the phonon state density of 5.45° and 38.94° grain boundary sample are calculated. The results indicate that the high-angle grain boundary has stronger scattering for acoustic branch phonons and the peak frequency becomes lower, whereas the optical branch ones have almost no effect on the heat conduction.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3