Thermal conduction mechanism of graphene-like carbon nitride structure (C<sub>3</sub>N)

Author:

Ren Guo-Liang,Shen Kai-Bo,Liu Yong-Jia,Liu Ying-Guang, ,

Abstract

As a new graphene-based two-dimensional semiconductor material, C<sub>3</sub>N has received extensive attention from researchers due to its excellent mechanical and electronic properties. Whether there is any difference in the phonon transport mechanism among different C<sub>3</sub>N structures remains to be further investigated. Therefore, four kinds of C<sub>3</sub>N structures with different patterns are constructed in this paper, and their thermal conduction mechanisms are studied by the non-equilibrium molecular dynamics (NEMD) method. The research results are shown as follows. 1) Among these four patterns, the C<sub>3</sub>N (M3) with the perfect structure has the highest thermal conductivity, followed by M1, and M4 has the lowest thermal conductivity. 2) Moreover, the thermal conductivities of C<sub>3</sub>N with different patterns have obviously different size and temperature effects. When the sample length is short, the phonon transport is mainly ballistic transport, while diffusion transport dominates the heat transport when the sample length further increases. As the temperature increases, Umklapp scattering dominates the heat transport, making the thermal conductivity and temperature show a 1/<i>T</i> trend. 3) Comparing with M3 , the patterns of M1 and M4 have large phonon band gaps, and their dispersion curves are further softened. At the same time, regardless of low-frequency or high-frequency phonons, localized features appear in the M1 and M4 (especially the M4), which has a significant inhibitory effect on thermal conductivity. This paper provides an idea for the better design of thermal management materials.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3