Negative differential thermal resistance in a two-dimensional gas model

Author:

Huang Li-Sheng,Luo Rong-Xiang,

Abstract

The negative differential thermal resistance (NDTR) effect refers to a phenomenon that may take place in a heat transport system where the heat current counterintuitively decreases as the temperature difference between heat baths increases. Understanding and controlling the NDTR properties of out-of-equilibrium systems and using them to design new functional thermal devices are the major challenges of modern science and technology, which has important theoretical significance and application prospects. Up to now, the various lattice models representing solid materials have been taken to study the NDTR properties, but the fluid models have not received enough attention. It has recently been shown that in one-dimensional hard-point gas models representing fluids, there is a mechanism for NDTR induced by heat baths. The mechanism for NDTR in such a system depends on the simple fact that decreasing the temperature of the cold bath can weaken the motion of particles and decrease the collision rate between particles and the hot bath, thus impeding thermal exchange between the cold and hot baths. In this paper, we study how this mechanism works in more general two-dimensional gas models described by multi-particle collision dynamics. The gas models we consider are in a finite rectangular region of two-dimensional space with each end in contact with a heat bath. Based on the analytical results and numerical simulations, we show that the mechanism underlying NDTR induced by heat baths is also in effect for two-dimensional gas models and is applicable for describing systems with small sizes and weak interactions. Our result, together with that previously obtained in one-dimensional gas models, provides strong evidence that gas systems can exhibit NDTR by decreasing the temperature of the heat bath, which sheds new light on the exploring direction for developing various fluidic thermal control devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3