Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon

Author:

Liu Zi,Zhang Heng,Wu Hao,Liu Chang,

Abstract

During the past few decades, surface plasmons (SPs) have become a research hotspot. The SPs are the collective oscillations of free electrons at the interface between metal and dielectric surrounding. Localized surface plasmon resonance (LSPR) for metal nanoparticles (NPs) has a wide application in the light emission enhancement by the selective photon absorption and by increasing local electromagnetic field. Nowadays, many achievements of SP-enhanced-emissions are applied to light emitting diodes. With the advantages of the direct wide band gap (3.37 eV) and large exciton binding energy (60 meV), zinc oxide (ZnO), which is considered as a potential material, has a wide range of applications, especially in ultraviolet (UV) optoelectronic devices. However, the low photoluminescence efficiency of ZnO limits the commercial applications of ZnO-devices. The relevant research shows that the selection of different metal NPs, such as platinum (Pt), aluminum (Al), argentum (Ag), aurum (Au), is one of the approaches to improving the UV emission from ZnO. In this study, two-dimensional arrays of Al NPs are used to improve the LSPR photoluminescence efficiency from ZnO grown by the atomic layer deposition (ALD). The two-dimensional arrays of Al NPs are fabricated on the surfaces of p-type Gallium nitride (GaN) substrates by colloid lithography. With the air-liquid interface self-assembly, the monolayer masks for colloid lithography are obtained on the substrates of p-type GaN. Then, after a 50-nm Al layer is deposited by thermal evaporation, the Al NPs’ arrays are gained by being dipped into toluene and extra sonication to remove the masks. Finally, 15 nm Al<sub>2</sub>O<sub>3</sub> and 200 nm ZnO films are deposited in sequence by ALD at a temperature of 125 ℃. The extinction spectra of Al NPs’ arrays are acquired by an ultraviolet-visible spectrophotometer. The results of the extinction spectra suggest that the radiative recombination rate is increased by the resonance coupling between the localized surface plasmons (LSP) of the Al NPs arrays and the excitons of the ZnO. A 1.91-fold enhancement of photoluminescence integral intensity in band-edge emission is measured because of the Al NP arrays coupled with ZnO. The result means that the LSP of the Al NPs’ arrays can increase the UV-emission of the ZnO. Therefore, this cost-effective and facile approach can be used in high-performance optoelectronic devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3