Application and evaluation of Chinese spallation neutron source in single-event effects testing

Author:

Wang Xun,Zhang Feng-Qi,Chen Wei,Guo Xiao-Qiang,Ding Li-Li,Luo Yin-Hong,

Abstract

Due to the lack of available spallation neutron source, the atmospheric neutron single event effect (SEE) in China were studied mainly by means of simulation and single energy neutron test. Since the Chinese spallation neutron source (CSNS) passed the national acceptance, it has become possible to carry out the research on atmospheric neutron SEE by using the CSNS. In this paper, the neutron SEE experiments of 3 kinds of SRAMs with different feature sizes are carried out for the first time by using the CSNS back-n. The application of CSNS back-n in the study of atmospheric neutron SEE is evaluated by comparing with the results of the earlier plateau experiment. The results show that the cross section of the single event upset is smaller than that of the plateau test, and the cross sections of different devices have no obvious monotonic relationship with feature size. The reason for the former result is that the energy spectrum of CSNS back-n is slightly softer than that of the atmospheric neutron. The reason for the second result is that small feature size means small critical charge and small sensitive volume, and these two factors compete with each other when they make the contribution to the cross section. According to the difference in energy spectrum and cross section among the SRAM devices, a correction factor is proposed to correct the test results based on CSNS back-n. For the difference in energy spectrum, different energy thresholds will produce different ratios between the cross sections by using CSNS back-n and atmospheric neutron. The neutrons of CSNS back-n are mainly concentrated around 1 MeV, which is close to the energy threshold of general SRAM devices. Thus, inaccurate energy threshold estimation will introduce a large error into the cross section of SEU. Thus, the relation between the correction factor and the energy threshold is analyzed. If 12 MeV is selected as the energy threshold to calculate the cross section, more consistent results could be obtained for our DUT in CSNS back-n and atmospheric neutron environment. In a word, the results show that the CSNS back-n can be used to speed up the atmospheric neutron SEE test, but the result should be corrected to evaluate the threat from atmospheric neutron. Fortunately, with the continuous increase of CSNS operating power, the neutron flux and the accelerated factor of CSNS will increase synchronously. Besides, other 3 white light neutron beams are planned in the CSNS project, the planned energy spectra are closer to those of atmospheric neutron. It is expected that the CSNS will be better applied to the study of atmospheric neutron SEE.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3