Characteristic parameters of optical wave and short-term beam spreading in oceanic turbulence

Author:

Wu Tong ,Ji Xiao-Ling ,Li Xiao-Qing ,Wang Huan ,Deng Yu ,Ding Zhou-Lin ,

Abstract

In 2000, Nikishov et al. presented an analytical model for the power spectrum of oceanic turbulence, in which the stable stratification of seawater is assumed, i.e., the eddy diffusivity of temperature is equal to that of salinity, and the eddy diffusivity ratio is equal to unity. Until now, all previous studies on the light propagation through oceanic turbulence were based on the Nikishov's power spectrum model. However, the eddy diffusivity of temperature and eddy diffusivity of salt are different from each other in most of underwater environments. Very recently, Elamassie et al. established a more reasonable power spectrum model of underwater turbulent fluctuations as an explicit function of eddy diffusivity ratio. The characteristic parameters such as the spatial coherence length of optical wave in turbulent medium play an important role in characterizing the strength of turbulence, the phase correction techniques in light propagation, etc. In the present paper, based on the Elamassie's power spectrum model of oceanic turbulence, the analytical formulae of the wave structure function, the spatial coherence length of optical wave and the Fried parameter in oceanic turbulence are derived, and the correctness of each of these formulae is verified. It is shown numerically that the results obtained by using the Elamassie's power spectrum model are quite different from those obtained by using the Nikishov's power spectrum model. If the Nikishov's power spectrum model is adopted, the strength of turbulence is underestimated when oceanic turbulence is dominated by the temperature fluctuations, while the strength of turbulence is overestimated when oceanic turbulence is dominated by the salinity fluctuations. If the Elamassie's power spectrum model is adopted, it is shown that the Kolmogorov five-thirds power law of the wave structure function is also valid for oceanic turbulence in the inertial range, and 2.1 times the spatial coherence length of optical wave is the Fried parameter, which are in agreement with those in atmospheric turbulence. In addition, based on the Elamassie's power spectrum model, the semi-analytical formula of the short-term beam spreading of Gaussian beams is derived in this paper, and its correctness is also verified. It is shown that the difference in short-term beam spreading is very large, whether the stable stratification of seawater is assumed or not. The results obtained in this paper are very useful for applications in optical communication, imaging and sensing systems involving turbulent underwater channels.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference25 articles.

1. Andrews L C, Phillips R L 2012 Appl. Phys. 51 2678

2. Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) pp368–411 (in Chinese) [饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第 368–411 页]

3. Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

4. Lu L, Ji X L, Baykal Y 2014 Opt. Express 22 027112

5. Pu H, Ji X L 2016 J. Opt. 18 105704

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3