Performance Analysis of MIMO-mQAM System with Pointing Errors and Beam Spreading in Underwater Málaga Turbulence Channel

Author:

Wang Jianying1,Yin Hongxi1,Ji Xiuyang1,Liang Yanjun1ORCID

Affiliation:

1. School of Information and Communication Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Both the long-term beam spreading caused by ocean turbulence and the pointing errors induced by the jitter of transmitters and receivers degrade the performance of underwater wireless optical communication (UWOC) links. To effectively alleviate their effects, an in-depth study was carried out over the Málaga turbulence channel with pointing errors and beam spreading in multiple-input and multiple-output (MIMO) UWOC. First, we analyzed the long-term beam spreading and the received light power for the finite receiving aperture in the presence of pointing error displacements. Based on this, the relationship between beam spreading, pointing errors, and signal power was established. Second, the approximate expressions of the average bit error rate (BER) and the communication outage probability were derived theoretically for this MIMO system using maximal-ratio combining (MRC) diversity. Third, the effects of the pointing errors on the coding and the diversity gains were explored for the MIMO links. Finally, using the observed ocean data from the Global Ocean Argo gridded dataset, we numerically verified the combined effects of ocean turbulence strength, beam spreading, and pointing errors on the average BER and outage probability of this system. These results also proved that adjusting the size of the receiving aperture or the order of the multiple quadrature amplitude modulation (mQAM) could effectively mitigate their effects.

Funder

National Natural Science Foundation of China

Science and Technology on Underwater Information and Control Laboratory

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3