Current transport mechanism of Schottky contact of Pt/Au/n-InGaN

Author:

Xu Feng1\2 ,Yu Guo-Hao ,Deng Xu-Guang ,Li Jun-Shuai ,Zhang Li ,Song Liang ,Fan Ya-Ming ,Zhang Bao-Shun , ,

Abstract

The Pt/Au Schottky contacts to InGaN samples with different background carrier concentrations are fabricated. The crystal qualities of InGaN samples are characterized by X-ray diffraction (XRD) and atomic force microscope (AFM), and the correlation between threading dislocation density of InGaN and growth temperature is further clarified. The full width at half maximum (FWHM) values of the InGaN (0002) XRD rocking curves show that the density of threading dislocations in InGaN, which can seriously deteriorate InGaN crystal quality and surface morphology, decreases rapidly with increasing growth temperature. The Hall measurements show that the background carrier concentration of InGaN increases by two orders of magnitude as growth temperature decreases from 750 to 700℃, which is due to a reduced ammonia decomposition efficiency leading to the presence of high-density donor-type nitrogen vacancy (VN) defects at lower temperature. Therefore, combining the studies of XRD, AFM and Hall, it can be concluded that the higher growth temperature is favorable for realizing the InGaN film with low density of VN defects and threading dislocations for fabricating high-quality Schottky contacts, and then the barrier characteristics and current transport mechanism of Pt/Au/n-InGaN Schottky contact are investigated by current-voltage measurements and theory analysis based on the thermionic emission (TE) model and thermionic field emission (TFE) model. The results show that Schottky characteristics for InGaN with different carrier concentrations manifest obvious differences. It is noted that the high carrier concentration leads to the Schottky barrier height and the ideality factor obtained by TE model are quite different from that by TFE model due to the presence of high density of VN defects. This discrepancy suggests that the VN defects lead to the formation of the tunneling current and further reduced Schottky barrier height. Consequently, the presence of tunneling current results in the increasing of total transport current, which means that the defects-assisted tunneling transport and TE constitute the current transport mechanism in the Schottky. However, the fitted results obtained by TE and TFE models are almost identical for the InGaN with lower carrier concentration, indicating that TE is the dominant current transport mechanism. The above studies prove that the Pt/Au/n-InGaN Schottky contact fabricated using low background carrier concentration shows better Schottky characteristics. Thus, the properly designed growth parameters can effectively suppress defects-assisted tunneling transport, which is crucial to fabricating high-quality Schottky devices.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3