New super junction lateral double-diffused MOSFET with electric field modulation by differently doping the buffered layer

Author:

Duan Bao-Xing ,Cao Zhen ,Yuan Song ,Yuan Xiao-Ning ,Yang Yin-Tang ,

Abstract

In order to break through the limit relationship between the breakdown voltage and specific on-resistance for LDMOS (lateral double-diffused MOSFET), a new super junction LDMOS is proposed with the electric field modulation by differently doping the buffered layer in this paper for the first time based on the buffered SJ-LDMOS. The new electric field introduced by the differently doping buffered layer, owing to the electric field modulation, is brought to the surface electric field of SJ-LDMOS, which alleviates a low lateral breakdown voltage due to the uneven electric field distribution for the LDMOS affected by the vertical electric field. Through the ISE simulation, the results are obtained that the surface electric field is optimized for the proposed SJ-LDMOS when the number of differently doping buffered layers is three. The saturated breakdown voltage for the new SJ-LDMOS is increased by about 50% compared with that for conventional LDMOS, and improved by about 32% compared with that for buffered SJ-LDMOS. The lateral breakdown voltage for unit length is increased to 18.48 V/μm. For the proposed SJ-LDMOS, the specific on-resistance is 25.6 mΩ· cm2 with a breakdown voltage of 382 V, which already breaks the limit relationship of 71.8 mΩ·cm2 with a breakdown voltage of 254 V in the conventional LDMOS.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference29 articles.

1. Wei J, Luo X R, Shi X L, Tian R C, Zhang B, Li Z J 2014 Proceedings of the 17th International Power Semiconductor Devices and ICs Waikoloa, USA, June 15-19, 2014 p127

2. He Y D, Zhang G G, Zhang X 2014 Proceedings of the 17^th International Power Semiconductor Devices and ICs Waikoloa, USA, June 15-19, 2014 p171

3. Chen X B, Wang X, Johnny K O S 2000 IEEE Trans. Electron Dev. 47 1280

4. Chen X B, Johnny K O S 2001 IEEE Trans. Electron Dev. 48 344

5. Park Y, Salama C T 2005 Proceedings of the 17th International Power Semiconductor Devices and ICs Santa Barbara, USA, May 26-30, 2005 p163

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3